Helpful assistant or fruitful facilitator? Investigating how personas affect language model behavior

Autor(en)
Pedro Henrique Luz de Araujo, Benjamin Roth
Abstrakt

One way to steer generations from large language models (LLM) is to assign a persona: a role that describes how the user expects the LLM to behave (e.g., a helpful assistant, a teacher, a woman). This paper investigates how personas affect diverse aspects of model behavior. We assign to seven LLMs 162 personas from 12 categories spanning variables like gender, sexual orientation, and occupation. We prompt them to answer questions from five datasets covering objective (e.g., questions about math and history) and subjective tasks (e.g., questions about beliefs and values). We also compare persona’s generations to two baseline settings: a control persona setting with 30 paraphrases of “a helpful assistant” to control for models’ prompt sensitivity, and an empty persona setting where no persona is assigned. We find that for all models and datasets, personas show greater variability than the control setting and that some measures of persona behavior generalize across models.

Organisation(en)
Forschungsgruppe Data Mining and Machine Learning, Institut für Europäische und Vergleichende Sprach- und Literaturwissenschaft
Journal
PLoS ONE
Band
20
ISSN
1932-6203
DOI
https://doi.org/10.1371/journal.pone.0325664
Publikationsdatum
06-2025
Peer-reviewed
Ja
ÖFOS 2012
602011 Computerlinguistik, 102001 Artificial Intelligence
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/af30d5d5-9a18-4809-8987-c812f7138846